CHAPTER 05
EXPLAINING THE BOOT PROCESS




-

Boot and Startup Processes in Linux
Systems

1. Introduction
2. The Firmware Startup
3. Linux bootloaders

4. System recovery options



-

, 1. Introduction

When you turn on the power to your Linux system, it
triggers a series of events that eventually leads to the

login prompt.



_ 1.1 Following the Boot Process

1. Workstation firmware starts
|. Performs a quick check of the hardware; POST

ll. Looks for a bootloader program to run from a bootable device

2. The bootloader runs and determines what Linux kernel program

to load

3. The kernel program loads into memory

* starts the necessary background programs required for the system to

operate

— \ / e



_ 1.2 Viewing the Boot Process

* Boot kernel messages are stored into

* a buffer in memory, called the kernel ring buffer

* could be reviewed using the dmesg command; sudo dmesg

* a log file, usually in the /var/log folder

* Sudo more /var/log/boot.log



-

2. The Firmware

* Control how to find hardware and how the OS starts

* On older workstations, Basic Input/Qutput System (BIOS).

* On newer workstations, Unified Extensible Firmware Interface (UEFI)



_2.1 The BIOS Startup

* A limitation: BIOS could read only one sector’s from a hard

drive into memory.

1. BIOS runs a bootloader program

produce a small menu allowing the user to boot between multiple OSs

allow you to load the bootloader program from several locations:

Internal hard drive, External hard drive, CD/DVD drive, or USB memory
Network server using either TFTP, NFS, HTTP, or FTP

2. Bootloader program, points to the location of the OS kernel file

* has a configuration file

located in the Master Boot Record (MBR)



_2.2 The UEFI Startup

* specifies a special disk partition, called the EFI System Partition (ESP), to

store bootloader programs

* allows for any size of bootloader program, plus the ability to store multiple

bootloader programs for multiple operating systems

* ESP is typically mounted in the /boot/efi directory, using the .efi extension

* boot manager, a built-in mini-bootloader, allows you to configure which
bootloader program file to launch

* efibootmgr



3. Linux Bootloaders

* Main bootloaders that have been used by default in Linux distributions:

* Linux Loader (LILO)

* doesn’t work with UEFI systems, so it has limited use on modern systems

* Grand Unified Bootloader (GRUB) Legacy

* default bootloader for all Linux, whether it runs on BIOS or UEFI

* GRUB2, Supports advanced features

* ability to load hardware driver modules

* using logic statements to dynamically alter the boot menu options



-y

3.1 GRUB Legacy

* GRUB Legacy allows you to select multiple kernels and /or operating systems using

* menu interface

* provides options for each kernel or operating system you want to boot with

* an interactive shell

* provides a way for you to customize boot commands on the fly



-

_3.1.1 Configuring GRUB Legacy

* GRUB Legacy system stores the menu commands in a text configuration file
/boot/grub /grub.conf

* GRUB Legacy configuration file consists of two sections:
* Global definitions

* Operating system boot definitions

* Sample configuration file
default O
timeout 10
color white /blue yellow /blue
title Ubuntu Linux
root (hd1,0)
kernel (hd1,0)/boot/vmlinuz
initrd /boot/initrd
title Windows
rootnoverify (hd0,0)



-

>3.2 GRUB2

* GRUB2 system changes the configuration file name to

grub.cfg and stores it in the /boot/grub/ folder

* Allows to have both GRUB Legacy and GRUB2 installed at the same

time

* Some Red Hat-based Linux distributions make a symbolic link to this

file in the /etc/grub2.cfg file; for easy reference

— \ / e



-

_3.2.1 Configuring GRUB2

* Here’s an example of a sample GRUB2 configuration file:

menuentry "Ubuntu Linux" {
set root=(hd1,1)
linux /boot/vmlinuz

initrd /initrd
}

menuentry "Windows" {
set root=(hdO,1)

}

* You should never modify that file. Instead, there are
separate configuration files stored in the /etc/default

* then sudo update-grub / sudo update-grub?2
* each boot option has individual configuration file
* For global commands, use the /etc/default/grub configuration file

— \ / e



_3.2.2 Installing GRUB2

* You don’t need to install GRUB2; you simply rebuild the main
installation file by running the grub2-mkconfig program

sudo grub-mkconfig -o /boot/grub/grub.cfg

* sudo update-grub2, includes both:

* grub2-mkconfig

* grub2-install



=

_3.2.3 Interacting with GRUB2

* shows the boot options defined in the configuration file.

* hold down the Shift key when

the system first boots, that will

display the GRUB boot menu

* can use arrow keys to switch

between boot options, the E

key to edit a boot entry, or the
C key to bring up the GRUB2
command line to submit

interactive boot commands.



-

3.3 Alternative Bootloaders

* Syslinux project includes five separate bootloaders that have special uses in Linux:

SYSLINUX: A bootloader for systems that use the Microsoft FAT filesystem
o popular for booting from USB memory sticks
* EXTLINUX: A mini-bootloader for booting from an ext2, ext3, ext4, or btrfs filesystem
* ISOLINUX: A bootloader for booting from a LiveCD or LiveDVD
* PXELINUX: A bootloader for booting from a network server; TFTP, NFS, HTTP, or FTP

* MEMDISK: A utility to boot older DOS OSs from the other SYSLINUX bootloaders

A S 1



_4. System Recovery

* Plenty of things can go wrong in the Linux startup
process, but most issues come down to two categories:

* Kernel failures (Kernel panic)

* Linux kernel stops running in memory, causing the system to crash

* Can be fixed by using alternative boot method and editing the

necessary files

* Drive failures

* may not be fatal, possible to recover from a corrupted root drive

v\/ ot



4.1 Kernel Failures

* Selecting Previous Kernels at Boot

* Most Linux distributions automatically keeping the most recent older kernel

available in the boot menu when adding a new kernel

* Single-User Mode; for the root user account
* by adding the single command to the Linux line in the boot menu commands

* the system will boot into runlevel 1, using the Systemd startup method

* Passing Kernel Parameters

* Specify different hardware settings as additional parameters to the kernel _~

in the Linux command and then boot from that entry in the GRUB menu

v\/ ot



